Nonconforming tetrahedral finite elements for fourth order elliptic equations
نویسندگان
چکیده
This paper is devoted to the construction of nonconforming finite elements for the discretization of fourth order elliptic partial differential operators in three spatial dimensions. The newly constructed elements include two nonconforming tetrahedral finite elements and one quasi-conforming tetrahedral element. These elements are proved to be convergent for a model biharmonic equation in three dimensions. In particular, the quasi-conforming tetrahedron element is a modified Zienkiewicz element, while the nonmodified Zienkiewicz element (a tetrahedral element of Hermite type) is proved to be divergent on a special grid.
منابع مشابه
SOME n - RECTANGLE NONCONFORMING ELEMENTS FOR FOURTH ORDER ELLIPTIC EQUATIONS
Motivated by both theoretical and practical interests, we will consider n-rectangle (n ≥ 2) nonconforming finite elements for n-dimensional fourth order partial equations in this paper. In the two dimensional case, there are well-known nonconforming elements, such as the Morley element, the Zienkiewicz element and the Adini element, etc (see [1-4]). In a recent paper [10], we have discussed the...
متن کاملA robust nonconforming H2-element
Finite element methods for some elliptic fourth order singular perturbation problems are discussed. We show that if such problems are discretized by the nonconforming Morley method, in a regime close to second order elliptic equations, then the error deteriorates. In fact, a counterexample is given to show that the Morley method diverges for the reduced second order equation. As an alternative ...
متن کاملLow Order Nonconforming Expanded Characteristic- Mixed Finite Element Method for the Convection- Diffusion Problem
A low order nonconforming finite element method is proposed for the convection-diffusion equations with the expanded characteristic-mixed finite element scheme. The method is a combination of characteristic approximation to handle the convection part in time and a expanded nonconforming mixed finite element spatial approximation to deal with the diffusion part. In the process, the interpolation...
متن کاملOn the Implementation of Mixed Methods as Nonconforming Methods for Second-order Elliptic Problems
In this paper we show that mixed finite element methods for a fairly general second-order elliptic problem with variable coefficients can be given a nonmixed formulation. (Lower-order terms are treated, so our results apply also to parabolic equations.) We define an approximation method by incorporating some projection operators within a standard Galerkin method, which we call a projection fini...
متن کاملLower Bounds for Eigenvalues of Elliptic Operators: By Nonconforming Finite Element Methods
The aim of the paper is to introduce a new systematic method that can produce lower bounds for eigenvalues. The main idea is to use nonconforming finite element methods. The general conclusion herein is that if local approximation properties of nonconforming finite element spaces Vh are better than global continuity properties of Vh, corresponding methods will produce lower bounds for eigenvalu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 76 شماره
صفحات -
تاریخ انتشار 2007